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Motivation
High precision test of gravity on cosmological scales is one of the main 
objectives of many current and future galaxy surveys. 

Perturbation theory can only bring us so far. To obtain accurate 
predictions in the quasi-linear to non-linear regime numerical simulations 
are required. 

For current and future surveys there is also a need to develop large 
ensembles of galaxy mocks to model the observables and their 
covariances etc. N-body simulations are computationally expensive. 
Faster methods are needed. 

I will discuss one such method - COmoving Lagrangian Acceleration - for 
doing such simulations and how this can be extended from LCDM to a 
large class of non-standard models and also including massive neutrinos.



N-body simulations in LCDM

The CDM density/velocity field in the universe is described by particles which move under 
Newtonian looking equations  

~̈x = �~r�
r2� = 4⇡Ga4�⇢m

Simple to solve. Challenge (apart from introduction of additional physics) is 
to make it accurate on a wide range of scales and fast. Requires adaptive 
resolution (adaptive grids or trees), good load-balancing / scaling, etc. 



~̈x = �~r��~r'

N-body simulations beyond LCDM

In common MG scenarios (scalar-tensor theories) we simply add an additional 
force which an associated field-equation:

r2� = 4⇡Ga4�⇢m
r2' = f(',r', �⇢m, a)

Not that much more complicated. The main difference is that the field-equation is (has 
to be) highly non-linear and often has bad convergence properties so often a factor of 
a few slower (can be improved see e.g. Barreira et al. 2015 and Bose et al. 2016).



COLA method
Idea (Tassev et al. 2013) is simple: instead of solving for the full particle trajectories in a 
simulation we perturb around the path predicted by Lagrangian perturbation theory.

~x = ~xLPT + ~

�x

!xLPT = !q + !! (!q, a)

¬!"x = ! !" ! ! ¬!"

Otherwise solved the same way as a normal N-body simulation.

r2� = 4⇡Ga4�⇢m



The displacement field can be expanded in a perturbative series 

In LCDM the displacement field factors in time and space 

This means we only need to compute the displacement field once (which we get this for 
free when we generate the initial conditions).
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COLA method
- The COLA split is exact in the limit of large number of time steps / small grid-
size. 

- What do we gain doing this? Allows us to take large time-steps, O(10) instead of 
O(1000) in N-body, and still maintain accuracy on the largest scales (at the 
expense of sacrificing accuracy on the smallest scales). 

- We can work with a fixed mesh which allows for solving everything with FFTs. 

- The method is in practice often O(100-1000) times faster than standard N-body. 

- However… not a replacement of N-body! Useful for large scale clustering 
statistics, generation of galaxy mocks etc. Not useful for studying small-scale 
dynamics.



COLA for scale-dependent growth
In general the growth of linear perturbations are determined by an effective 
Newtonian constant 

which is often scale-dependent -> scale-dependent growth-factors. To generalise 
COLA we need to add support for this. 

We also need to solve for the additional gravitational degrees of freedom, i.e. solving 

The common used methods are too slow. We instead use a fast approximate method

G(k, a)

G
⌘ µ(k, a)

r2' = f(',r', �⇢m, a)



For typical MG models we know how the solution to the field equation behaves in two regimes: 

[1] On large cosmological scales the evolution is linear and typically on the form

A fast approximate method

Using this in simulations is often not good enough as it misses the main ingredient of viable 
modified gravity theories: a screening mechanism to recover General Relativity in certain regimes. 

[2] For a spherical symmetric density configuration we can solve (or approximate) the solution 
analytically. Typically one finds  

Fifth-force is some strength times the Newtonian-force modified by some screening factor 
which depends on both the object in question and the environment.

r2' = m2(a)'+ �(a) · 4⇡Ga4 · �⇢m

F' = �~r' = C(a) · ~r� · ✏(�, ~r�,r2� / ⇢m )



A fast approximate method
The screening factor tells us how much of the matter-density that contributes to the fifth-force. 

Usually depends on quantities that we know (or can easily compute) in a numerical 
simulation: the newtonian potential and/or it’s first derivatives. 

Proposed method (Winther & Ferreira 2014): we amend the linear-equation with a screening 
factor derived from spherically symmetric solutions:

r2' = m2(a)'+ �(a) · 4⇡Ga4 · �⇢m · ✏(�,r�, ⇢m)

Agrees well with linear theory on the largest scales and models the screening effect on 
non-linear scales. 

Linear field equation -> much easier to solve (FFTs). 

Implemented and tested in traditional N-body for several different models [f(R) gravity, 
nDGP, cubic galileon, symmetron]



Comparison with exact simulations

For the models tested we find percent level 
agreement in the matter power spectrum to k of one 
to a few and in the halo mass function for the largest 

masses. Often conservative results.



COLA with scale-dependent growth
The displacement-fields does not factor in time and space, but they 
do factor in Fourier space to first order 

Simple growth-factors for each Fourier mode 

!ö! (1) (!k, a) = D1(k, a) ö! (1)
ini (!k, aini )
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3
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COLA with scale-dependent growth
To second order the expansion will in general depend on two 
wavenumbers: 

where the growth factor is determined by 

where gamma is a model dependent quantity. Computing the integral 
above is too expensive so we settle on an approximation here by 
assuming the same k1,k2-dependence as in LCDM:
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COLA with scale-dependent growth
With these approximations the displacement-fields can be computed at every 
time-step as:

Makes it roughly 3 - 4 - 5 times slower than COLA for LCDM, however still a huge 
O(100) speedup compared to N-body.

Using only time-dependent growth-factors (small k limit) is one approximation that 
seems to work very well for many models and makes the time comparable to 
LCDM.

We implemented this in the public availiable L-PICOLA code (Howlett, Manera, 
Percival 2015) and tested it against full N-body simulations (Winther, Koyama, 
Manera, Wright, Zhao 2017).
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Comparison with N-body

Percent level agreement in boost-factors wrt LCDM up to k of a few  
(even though the pure P(k) deviates at percent level at much larger scales)



COLA with massive neutrinos
Neutrinos are known to have mass and affect structure formation significantly on 
quasi-linear to non-linear scales (depending on the mass). 

Large velocity dispersion of non-relativistic neutrinos prevent clustering on small 
scales -> suppresses growth of structures -> scale dependent growth. 

Can roughly be though of as a scale-dependent Newton’s constant so it fits 
directly in to the picture we had above 

Massive neutrinos often highly degenerate with MG so important to take into 
account.

µ(k, a) = 1 k ! kfs

µ(k, a) =
! " ! !

!
k # kfs



COLA with massive neutrinos
For the particle mesh part of the code we use the grid-method of (Brandbyge and 
Hannestad 2008). Neutrinos are kept in Fourier space during the simulation and evolved 
lineary. When needed we simply add it to the source of the Poisson equation in Fourier space 

where  

and where we use the same initial seed as for CDM to generate the initial neutrino 
perturbations. 

For the exact details see Wright, Winther, Koyama 2017. 
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LCDM (left) and f(R) (right) compared to full N-body simulations with massive 
neutrinos. 

The right plot illustrates the degeneracy of massive neutrinos (suppresses 
growth) and modified gravity (enhances growth).

Comparison to N-body with neutrinos



Summary
We have extended the COLA method to models with scale dependent growth. 
Depending on the model in question this can be done almost as fast as for LCDM 
down to a factor of 4-5 slower (but still a huge speedup compared to N-body). 

Scale-dependent COLA can also be used for accurate modelling of the effects of 
massive neutrinos in both LCDM and MG. 

Very useful for mock generation, for studying clustering statistics (P(k), RSD etc.) and 
boost-factors wrt LCDM (even down to fairly non-linear scales). 

A public available code can be found at  

                       [ https://github.com/HAWinther/MG-PICOLA-PUBLIC ]  

Comes with models such as f(R), DGP / cubic galileon, symmetron, general 
(m(a),beta(a)) models, JBD, … and contains support for three common methods of 
screening. Can do a lot of analysis on the fly (P(k), RSD multipoles, halofinding, …)

https://github.com/HAWinther/MG-PICOLA-PUBLIC

